

Facultad de Ingeniería Comisión Académica de Posgrado

748/10

Formulario de Aprobación Curso de Posgrado 2010

Asignatura:

(Si el nombre contiene siglas deberán ser aclaradas)

"Metaheurísticas y Optimización sobre Redes"

Profesor de la asignatura 1:

Dr. Ing. Franco Robledo Amoza, gr4 DT, Dpto. de Inv. Operativa, INCO. Dr. Ing. Pablo Rodriguez-Bocca, gr3, Dpto. de Inv. Operativa, INCO.

(título, nombre, grado o cargo, Instituto o Institución)

Profesor Responsable Local ¹: Dr. Ing. Franco Robledo Amoza. (título, nombre, grado, Instituto)

Otros docentes de la Facultad: (título, nombre, grado, Instituto)

MSc. Ing. Antonio Mauttone, gr3, Dpto. de Inv. Operativa, INCO. MSc. Ing. Alfredo Olivera, gr2, Dpto. de Inv. Operativa, INCO. MSc. Ing. Pedro Piñeyro, gr2, Dpto. de Inv. Operativa, INCO.

Docentes fuera de Facultad: (título, nombre, cargo, Institución, país)

Instituto ó Unidad: Instituto de Computación.

Departamento ó Area: Departamento de Investigación Operativa.

Agregar CV si el curso se dicta por primera vez. (Si el profesor de la asignatura no es docente de la Facultad se deberá designar un responsable local)

Fecha de inicio y finalización: 21/9/2010 al 27/12/2010

Horario y Salón: Lunes y Viernes de 17:30 a 19:30 en el Salón Azul del Instituto de Química.

Comienzo: Lunes 21 de Setiembre de 2010. Lunes 20 Finalización: 27 de Diciembre de 2010.

Finalización: 21 de Diciembre de 2010

Horas Presenciales: 61 horas.

(sumar horas directas de clase – teóricas, prácticas y laboratorio – horas de estudio asistido y de evaluación) Se deberán discriminar las mismas en el ítem Metodología de enseñanza.

Nº de Créditos: 11.

Público objetivo y Cupos:

(si corresponde, se indicará el número de plazas, mínimo y máximo y los criterios de selección. Si no existe indicación particular para el cupo máximo, el criterio general será el orden de inscripción en el Depto. de Posgrado, hasta completar el cupo asignado)

El curso, como curso de posgrado, esta dirigido a estudiantes de: Maestría en Informática, Maestría en Ingeniería Eléctrica, Maestría en Ing. Matemática, Doctorado en Informática, y Doctorado en Ingeniería Eléctrica. El curso se desarrolla en tres fases.

En la primer fase los docentes de teórico brindan una introducción general a las diferentes metaheuríticas. Luego se brindaran diferentes ejemplos de la aplicación de las metaherísticas para encontrar soluciones a diversos problemas de optimización combinatoria asociados al diseño de redes.

Facultad de Ingeniería Comisión Académica de Posgrado

En una segunda fase, los estudiantes (en grupo de dos personas) deberán exponer (presentación oral y preguntas) un paper relacionado con la aplicación de metaheurísticas para el diseño de redes.

Cada grupo presentará un paper diferente, y elaborará preguntas para dos grupos adicionales; de manera que para cada tema, además de la presentación oral realizada por un grupo, habrá al menos otros dos grupos que realizan el comentario y preguntas del tema presentado.

En una tercera fase, los docentes propondrán tres problemas de optimización sobre redes los cuales deberán ser resueltos metaheuristicamente. Cada grupo deberá resolver alguno de los tres problemas mediante la aplicación de alguna de las técnicas vistas en clase. Se deberán hacer pruebas experimentales y un análisis de los resultados obtenidos. Como producto de esta fase, cada grupo deberá elaborar un informe que contenga la customización de la metaheurística elegida para la resolución del problema en cuestión, la implementacion, resultados experimentales, y conclusiones

Al finalizar el curso, cada estudiante entregará:

- El informe inherente al problema de estudio que le tocó. Incluyendo
- Una propuesta de solución (no la implementación) para cada uno de los otros dos problemas de estudio
 no abordados. Aquí pedimos solamente una propuesta de cómo abordaría metaheurísticamente los otros
 dos problemas (brindando pseudocodigos) y explicando como seria la customización de las metodologías
 de base elegidas. Esta parte es individual, no grupal.

Objetivos:

El objetivo del curso es transmitir la potencia del enfoque Metaheurístico y Técnicas Aproximadas para la resolución del problemas combinatorios, en particular aquellos relacionados al diseño de redes que surgen de diferentes aplicaciones reales.

Conocimientos previos exigidos:

Investigación Operativa, Probabilidad y Estadística.

Conocimientos previos recomendados:

Programación orientada a objetos.

Metodología de enseñanza:

(comprende una descripción de las horas de clase asignadas y su distribución en horas de práctico, horas ded teórico, horas de laboratorio, etc. si corresponde)

Las horas presenciales se desglosan en:

- Horas de Teórico: 20 horas (diez clases de dos horas).
- Horas de Clase de Consulta por Proyecto Final: 20 horas (2 horas por semana).
- Horas de Evaluación de Presentaciones Orales (Ponencias de Estudiantes): 15 horas.
- Horas de Evaluación de Trabajo Final: 6 horas.

El Proyecto Final requiere una dedicación de 100 horas de trabajo por parte del estudiante.

El curso está estructurado en tres fases:

 Una fase de exposición por parte de los docentes de diferentes metaheuríticas y técnicas aproximadas y su aplicación a problemas NP-Hard que surgen de la modelización de aplicaciones reales de optimización sobre redes.

Esta fase está prevista que dure: 20 horas (10 clases de dos horas cada una).

3 tree

Facultad de Ingeniería Comisión Académica de Posgrado

La distribución de clases por docentes en esta fase es la siguiente:

- Pablo Rodriguez-Bocca, 2 clases.
- o Franco Robledo, 4 clases.
- o Alfredo Olivera, 1 clase.
- Antonio Mauttone, 1 clase.
- Pedro Piñeyro, 2 clases.
- Una fase que consta de una serie de ponencias (una por cada grupo) donde cada grupo de dos estudiantes presenta un paper relacionado con una aplicación real del enfoque metaheurístico para resolver un problema de optimización sobre redes.
 Esta fase está prevista que dure: 15 horas.
- Una tercera fase donde cada grupo resuelve mediante alguna de las técnicas vistas en el curso un problema de estudio presentado en clase (un problema de estudio elegido sobre un total de tres problemas de estudio). Se realizará la implementación del algoritmo propuesto además de un estudio experimental del desempeño del algoritmo sobre una bateria de casos de prueba. Se presentará un informe completo con la resolución del problema.

Adicionalmente, en esta fase, cada estudiante en forma individual deberá elaborar propuestas de solución para los otros dos problemas de estudio. Se deberá entregar un informe con los algoritmos diseñados, la justificación de las metodologias de base utilizadas, y la explicación de la customización realizada. No se pedirá implementar los algoritmos en estos dos casos.

Esta fase está prevista que dure: 100 horas de dedicación del estudiante.

Durante esta etapa, se brindarán algunas clases de consulta periódicas por parte de los docentes para guiar a los estudiantes en la resolución de los tres problemas de estudio presentados en clase.

Forma de evaluación:

Para la evaluación se tendrá en cuenta:

- 15% la presentación de un paper y el cuestionario de preguntas para otros dos trabajos de otros dos grupos.
- 60% el informe, fuentes y ejecutables sobre la resolución del problema de estudio abordado.
- 25% el informe individual con las propuestas de solución de los otros dos problemas de estudio presentados en clase.

Quien no realice la presentación o algunos de los dos informes escritos será reprobado.

Temario:

- i) Problemas NP-Hard. Optimización combinatoria. Complejidad. Clases de algoritmos. Búsqueda global vs. búsqueda local.
- ii) Taxonomía de metaheurísticas (técnicas deterministicas y probabilísticas; trayectorias y poblaciones).
- iii) Metaheurísticas más empleadas: Simulated Annealing (SA); Tabu Search (TS); Variable
 Neighborhood Search (VNS); Greedy Randomized Adaptive Search Procedure (GRASP);
 Trayectorias multiples, multi-arranque (Iterated LS, Variable LS); Algoritmos Genéticos (AG); Ant
 Systems (AS); Scatter Search (SS); Algoritmos Meméticos.
- iv) Estrategias: intensificación y diversificación. Elección de parámetros. Análisis de resultados.
- v) Modelo RNN (Random Neural Network) y su aplicación como técnica de optimización.
- ví)
 Presentación (por parte de los docentes) de diversas aplicaciones reales de problemas de optimización sobre redes que han sido resueltos eficientemente mediante un enfoque metaheurítico. Estas ponencias buscaran cubrir las metodologías más empleadas y diferentes formas de customización a problemas de optimización relevantes. En particular algunos de los trabajos a

Facultad de Ingeniería Comisión Académica de Posgrado

presentar son publicaciones realizadas por los docentes en diferentes tareas de investigación realizadas.

vii) Presentación (por parte de los estudiantes) de una serie de trabajos de optimización sobre redes seleccionados por los docentes.

Bibliografía:

(título del libro-nombre del autor-editorial-ISBN-fecha de edición)

Bibliografia a brindar:

- Una carpeta con los papers que presentarán los docentes en el curso.
- Una carpeta con los papers a presentar por los estudiantes en el curso.
- Referencias bibligráficas adicionales de referencia que tendrán los diferentes grupos según la metodología que emplearán para resolver el caso de estudio que les toque. Dichas referencias se les otorgará en forma oportuna.

Bibliografía general:

- Essays and surveys in metaheuristics. C.C. Ribeiro, P. Hansen. Kluwer, 2001.
- Meta-heuristics: advances and trends in local search paradigms for optimization. Stefan Voss, Silvano Martello, Ibrahim H. Osman and Catherine Roucairol (eds.). Kluwer Academic Publishers, 1999. ISBN: 0-7923-8369-9.
- Local Search in Combinatorial Optimization (Wiley-Interscience Series in Discrete Mathematics and Optimization)". E. Aarts and J.K. Lenstra (eds.), John Wiley and Sons, 1997. ISBN: 0471948225.
- Meta-heuristics: theory and applications. Osman, Ibrahim H.; Kelly, James P. eds.. Kluwer, 1996. ISBN: 0-792397-002.
- Facts, conjectures, and improvements for simulated annealing. Salamon, Peter; Sibani, Paolo; Frost, Richard. Siam, 2002. ISBN: 0898715083.
- Genetic Algorithms in search, optimization, and machine learning. David E. Goldberg. Addison-Wesley, 1989. ISBN 0201157675.
- Swarm intelligence: from natural to artificial systems Eric Bonabeau and Marco Dorigo and Buy Theraulaz - Oxford University Press - 1999 - ISBN 019513159 2.
- Surveys in combinatorial optimization. Martello, Silvano ed. North-Holland, 1987. ISBN: 0-444-70136-2.
- Integer programming and combinatorial optimization. Proceedings of the 6th International IPCO Conference. Bixby, Robert E.; Boyd, Andrew E.; Ríos Mercado, Roger Z., eds. Springer 1998. Lecture Notes in Computer Science; 1412. ISBN: 354064590X.
- T.A. Feo and M.G.C. Resende (1995) Greedy randomized adaptive search procedures. J. of Global Optimization, 6:109–133, 1995.
- L. Pitsoulis and M.G.C. Resende (2002) <u>Greedy randomized adaptive search procedures</u>. In P.M.Pardalos and M.G.C.Resende, editors, *Handbook of Applied Optimization*, pp. 168–181, Oxford University Press.
- M.G.C. Resende and C.C. Ribeiro (2003) <u>Greedy randomized adaptive search procedures</u>. In F. Glover and G. Kochenberger, editors, *Handbook of Metaheuristics*, pp. 219–249, Kluwer Academic Publishers, 2003.
- P. Festa and M.G.C. Resende (2002) <u>GRASP: An annotated bibliography</u>. In C.C. Ribeiro and P. Hansen, editors, *Essays and Surveys on Metaheuristics*, pp. 325–367, Kluwer Academic Publishers, 2002

Ena

Facultad de Ingeniería Comisión Académica de Posgrado

- Glover, F. and M. Laguna. (1997). Tabu Search. Kluwer, Norwell, MA.
- Glover, F. "Tabu Search Part I", ORSA Journal on Computing 1989 1: 3, 190-206.
- Glover, F. "Tabu Search Part II", ORSA Journal on Computing 1990 2: 1, 4-32.
- J. De Vicente, J. Lanchares, R. Hermida, "Placement by Thermodynamic Simulated Annealing", Physics Letters A,Vol. 317, Issue 5-6, pp.415-423, 2003.
- V. Cerny, "A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm". Journal of Optimization Theory and Applications, 45:41-51, 1985.
- E. Gelenbe. Stability of the random neural network model. Neural Computation, 2(2):239–247, 1990.
- E. Gelenbe and F. Batty. Minimum cost graph covering with the Random Neural Network. Computer Science and Operations Research. (New York: Pergamon), pages 139–147, 1992.
- E. Gelenbe, V. Koubi, and F. Pekergin. Dynamical Random Neural Network approach to the Traveling Salesman Problem. In Proceedings of the IEEE Symposium on Systems Engineering in the Service of Humans, pages 630–635. Systems, Man and Cybernetics, 1993.